We are a global science and tech team for developing cutting-edge optimization models for Amazon's middle mile network. We are owning the entire lifecycle of tech products from idea to production-use and deploy our tools on a worldwide basis. Our team is composed of a wide variety of tech roles including scientists, data engineers and business intelligence engineers.
Have you ever wondered how Amazon delivers timely and reliably hundreds of millions of packages to customer's doorsteps? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems?
If so, we look forward to hearing from you!
Amazon Transportation Services is seeking a Senior Applied Scientist to be based in the EU Headquarters in Luxembourg. As a key member of the Research Science Team of ATS operations, this person will be responsible for designing algorithmic solutions based on data and mathematics for optimizing the middle-mile Amazon Transportation Network. The successful applicant will ensure that our end-to-end strategies in terms of customer demand fulfillment, routing, consolidation locations, linehaul/airhaul/sea options and last-mile transportation are streamlined and optimized.
Senior Applied Scientist, ATS Science and Technology
Job ID: 2834734 | Amazon EU Sarl
This critical role requires an aptitude for independent initiative and decision-making, the ability to drive innovation in Transportation modelling and optimization across Amazon's expanding European network and linking into global initiatives and expansion strategies.
- Design and prototype algorithmic solutions for standardized processes.
- Lead complex time-bound, long-term as well as ad-hoc transportation modelling analyses to help management in decision making.
- Communicate to leadership results from business analysis, strategies and tactics (for senior candidates).
- Drive large-scale projects to scale and enhance Amazon's EU transportation network (for senior candidates).
- Partner with the planning, linehaul/airhaul and sort center operations teams, while working closely with last-mile, supply chain, and global delivery departments for modeling and optimizing the transportation network of EU.
Basic Qualifications
- PhD in Operations Research, Machine Learning, Statistics, Applied Mathematics, Engineering, Computer Science or other field related to algorithms.
- Excellent written and verbal communication skills. Ability to communicate at a level appropriate to the audience.
- Experience designing and implementing models and algorithms for one or more 1) Combinatorial optimization problems (e.g., scheduling, vehicle routing, and facility location), 2) Continuous optimization problems (e.g., linear programming, convex programming, non-convex programming), 3) Predictive analytics (e.g., forecasting, time-series, neural networks), 4) Prescriptive analytics (e.g., stochastic optimization, bandits, reinforcement learning)
- Experience implementing algorithms in traditional programming languages (C++/ Java/ python)
- Comfortable to tradeoff complexity and efficiency of solution methodologies, according to the requirements of the problem. Ability to deal with ambiguity.
Preferred Qualifications
- Detailed knowledge of optimization methods including linear and mixed-integer programming, network modeling, constraint programming, approximation algorithms, and advanced heuristic techniques.
- Expertise on MIP strategies to customize and leverage commercial algorithms and adapt them as required.
- Detailed knowledge of forecasting techniques with time-series tools, including ARIMA models, exponential smoothing, LSTM, CNNs.
- Expertise on policy optimization techniques, including reinforcement learning, deep Q-learning, bandits, and online optimization.
- Experience implementing models and analysis tools through the use of high-level modeling languages (e.g. R, Matlab as examples).
- Experience collecting, processing and combining big data with appropriate methodologies (e.g. Hadoop, Map-Reduce)
GIMED1_DE